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Abstract 
Researches on machined surface roughness prediction in the face milling process of steel are 
presented in the paper. The data for modelling by the application of neural networks have 
been collected by the central composite design of experiment. Input variables are the 
parameters of machining (number of revolutions – cutting speed, feed and depth of cut) and 
the way of cooling, while the machined surface roughness is output variable. In the modelling 
process the algorithms Back-Propagation Neural Network, Modular Neural Network and 
Radial Basis Function Neural Network have been used. Various architectures of neural 
networks have been investigated on a data sample and they have generated the prediction 
results which are at the RMS (Root Mean Square) error level of 5.24 % in the learning phase 
(8.53 % in the validation phase) for the Radial Basis Function Neural Network, 6.02 % in the 
learning phase (8.87 % in the validation phase) for the Modular Neural Network and for the 
Back-Propagation Neural Network 6.46 % in the learning phase (7.75 % in the validation 
phase). 
(Received in September 2012, accepted in June 2013. This paper was with the authors 3 months for 2 revisions.) 
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1. INTRODUCTION 
 
The transfer of new technological knowledge into own production systems, the inventiveness 
of those working in the preparation and production as well as the application of new scientific 
approaches that will improve the level of knowledge and organization in production 
preparation sectors have a considerable impact upon the final characteristics of products. The 
essential characteristic of a product or of the parts built into the product is the required quality 
of the machined surfaces, very often demonstrated by the surface roughness. It has a crucial 
influence on technological time and overall production costs but on fatigue resistance, 
lubrication, friction, and wear properties as well [1-2]. The surface roughness is affected by 
many controlled and uncontrolled process parameters that are difficult to achieve and 
continuously monitor. Controlled parameters of a machining process are feed rate, depth of 
cut and cutting speed. Other factors, such as the material properties of tool and workpiece, 
workpiece quality, tool geometry, cutting conditions, type of workpiece clamping, tool 
machine vibrations, tool wear etc. cannot be easily controlled [3-11]. 
      On this basis, the aim of many scientific-research projects and scientific papers is to 
model, simulate and predict the surface roughness and optimize cutting parameters to obtain 
the desired level of surface quality of machined products. In the field of modelling and 
roughness prediction neural networks (NN) are widely applied. The authors first conduct 
designed experiments. The Taguchi design of experiment is often used to reduce the time and 
cost of the experiments [12, 13], but the central composite [14] and the full factorial design of 
experiments [1] are also used. The main purpose of designed experiments is to monitor the 

mailto:tsaric@sfsb.hr


Saric, Simunovic, Simunovic: Use of Neural Networks in Prediction and Simulation of … 

226 

influence of controlled parameters on surface roughness [1, 15-18], but some authors also add 
other parameters like chip’s characteristics [12], pre-tool wear vibrations [19], workpiece-tool 
vibration [20], lubrication-cooling condition [21] etc. For modelling and later for predicting 
the surface roughness different NN are used: Radial Basis Function NN, Feed Forward NN, 
Bayesian NN and Neuro-Fuzzy networks. 
      El-Sonbaty et al. [19] predicted the surface roughness using a Feed Forward Back- 
Propagation NN with different structures. The roughness prediction error of obtained model is 
about 2 %. NN based on Back-Propagation learning algorithm is used to develop the surface 
roughness model in paper [22]. The roughness prediction model proved applicable with an 
error of about 3 %. Feed Forward Back-Propagation was selected in paper [23], and in 
defining the model various transfer functions were compared. Munoz-Escalona et al. [12], 
developed different types of NN (Radial Base Feed Forward and Generalized Regression) 
which evaluated surface roughness following face milling. The best results were achieved by 
the Feed Forward NN. The investigation also showed that the surface roughness was most 
affected by the chip thickness and cutting speed. 
      In the roughness prediction model developing different techniques are often combined: 
Fuzzy Logic and NN, NN and Harmony Search algorithm (HS) [24], NN based on 2D Fourier 
transform [25] and others. The intention is to define quality models based on a small set of 
data [26] and to reduce error in roughness prediction within the limits from 1.5 to 10 %. 
      The purpose of this paper is to investigate and compare the influence of different 
algorithms i.e. architectures of NN on error degree of the roughness prediction model of the 
steel surface machined by face milling. Three NN algorithms have been used (Back-
Propagation Neural Network - BPNN, Modular Neural Network - MNN and Radial Basis 
Function Neural Network - RBFNN). 
 
2. DEFINITION OF PROBLEM AND RESEARCHING GOAL 
 
The data set was obtained based on the conducted central composite design of experiment 
with the position of the axial runs from the centre of experiment, which amounts to 1 [27]. 
Input variables were the machining parameters (number of revolutions – cutting speed, feed 
and depth of cut) and the way of cooling (without cooling, cooling through the tool and 
cooling outside the tool). Factor levels are shown in Table I. 
 

Table I: Factor levels data. 
 

Factor Factor name Low level Medium level High level 
A Depth of cut, mm 0.5 1 1.5 
B Feed, mm/min 100 300 500 
C Number of revolutions, min-1 400 600 800 

D Way of cooling without cooling through the tool 
cooling 

cooling outside 
the tool 

 
      Specimens used in experiment were made from S235JRG2 structural steel plates; 
dimensions 100×70×20 mm. Measuring specimens were prepared in advance. The surfaces 
planned for milling were premachined and to obtain equal clamping side faces of the 
specimens were also machined. The milling process was performed by an angle milling head 
of 80 mm diameter, of producer ISCAR (cutting plates H490 ANKX). The machining device 
was a vertical CNC milling machine MAG FTV 850-1800. The output variable i.e. surface 
roughness Ra, was measured according to the standard and required measuring procedures, 
using the device Talysurf Surtronic duo by Taylor Hobson. Measured roughness was within 
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limits 0.33-2.95 m. A representative number of specimens and measuring data were 
provided by the design of experiment while the broad spectrum complexity of cases provided 
a good sample for NN training and testing. Distribution of type entries by separate specimens 
i.e. sub-specimens was performed out of the initial set of data according to the principle of 
coincidence. After that the set was divided into three classes with the limits (widths) of the 
classes adjusted so as to have equal number of types (i.e. observed cases) in each class. This 
was done so that each of the three classes could have the same number of cases and that some 
classes would not be given preference in the NN learning process. The model variables which 
were not numerical had to be transformed into categories and classes (way of cooling). 

2.1  Selection of the type of neural networks – general models 

The abstract mathematical description of an artificial neuron (Fig. 1a) is derived based on the 
imitation of the functions of a biological neuron.  
 

 
a)  

 
b)  

 
Figure 1: a) Neuron structure; b) Back-Propagation Neural Network.  
 

Table II: Some graphs and expressions of transfer functions. 
 

Graph of transfer function Expression of transfer function 
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      As can be seen from Fig. 1a the neuron body takes over the role of a summator while the 
role of dendrites is taken over by the inputs to the summator. The biological neuron activation 
level of sensitivity is taken over by the transfer-activation function which determines the 
moment of launching the impulse to the neuron output. The transfer function can be linear or 
nonlinear (Table II). 
      In linear transfer functions the summator output is multiplied by the factor and the amount 
thus obtained is forwarded to the neuron output. In nonlinear functions the summator outputs 
change in accordance with various forms of functions while the neuron outputs can take over 
different values depending on transfer function. G is the function increment. It is calculated as 
G = 1/T. T is the function threshold. 
      Along with the transfer functions given in Table II the transfer function Digital Neural 
Network Architecture – DNNA is also used in the investigation. The character of DNNA is 
nonlinear and is calculated according to the Eq. (1). The transfer function output (xi) uses the 
input signal – vector (oj) to connect with the weights (wij) in the interval [0, 1] and can be 
mathematically expressed as: 

 
j

jiji owx )1(1            (1) 

      In most applications it is important for the transfer functions to be able to accept negative 
signals and weights. If these signals and weights are to be separated and their activation 
values taken as positive and negative values, they are given through the values of the 
variables: xi

+ i xi
-, and computed by the following expressions: 

 


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      As there are no corresponding postulates defining which kinds of transfer functions could 
be allocated to which kinds of problems, it follows that the choice should be made on a 
concrete problem in the phase of defining the corresponding architecture of a NN. Learning 
rules (algorithms) make it possible to adjust (calculate) the weights of the connections 
between neurons. There are a number of learning rules but the following ones have been 
chosen for this investigation: Delta rule (generalized Delta rule), Delta-Bar-Delta, Extended 
Delta-Bar-Delta and Normalised-Cumulative Delta rule. 
      For most real problems different rates of learning are used for different layers with a low 
level of the learning rate for the output layer. During learning on a defined structure of neural 
network it is necessary to define and accept the criteria to evaluate the level of success of this 
process. Quantification of these criteria serves to compare the applied algorithm with other 
algorithms used for learning. For the proposed investigation Root Mean Square error – RMS 
was adopted: 

N

Od
MSRMS

N

n
nn




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2)(
      (4) 

where:  MS – Mean Square error; dn – Desired value of a NN nth output; On – NN nth output;  
N – Number of pairs of the training set input-output values. 

      Back-Propagation Neural Network represents an important technique to define nonlinear 
transfer functions between continuous input values and one or more output values. Every 
layer is completely connected with the following one thus indicating a great number of 
synapses. Fig. 1b displays the BPNN standard structure. To better understand the computation 
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of the values in the network (Fig. 1a, b) and to avoid confusion from the neuron in one layer 
to the other layer the indices and exponents will be used to describe the characteristic 
attributes. They are given in what follows: 

 s
jx  – output state of the jth neuron in the sth layer, 
 s
jiw  – weight of the connection of the ith neuron in the (s-1) layer with the jth neuron in the 

    sth layer, 
 s
jI  – weighted sum of input of the jth neuron in the sth layer. 

      At the start of the learning process i.e. of the connections' weights computation, the input 
layer transfers data to the first hidden layer. Every neuron in the hidden layer receives the 
weighted input which is, by the network initialization, usually given random values in the 
interval from -0.1 to 0.1. These inputs are transformed in view of the previously defined 
attributes and get the form: 

     
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       The computed neuron inputs are transformed through the transfer or activation function 
and sent to the output of the neuron according to the following expression: 
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where f  is the transfer function (sigmoid or some other selected function). Every sending of 
the neuron output is connected with a local error. 
      Let's suppose now that the network has some global error of the function E connected 
with the differential of the function of all the connections' weights in the network. The global 
error E is defined in the output layer and is given as: 

  
25.0 kk xdE         (7) 

where: dk is the desired (real) output, while xk  presents the output of the network and k is the 
index of the output component. The critical parameter that represents the error and propagates 
backwards through all the layers of the network is defined as: 

 
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      Using connected rules twice successively the relation is obtained between the local error 
and the particular neuron of the sth layer and all local errors of the layer s+1, given by the 
expression: 
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      The previous expression can be used only for non-output layers. The aim of the learning 
process i.e. of adjusting the connection weights in this network is to minimize global error 
and propagate it backward through the network all the way to the input layer. The aim of this 
propagation of the minimized global error through the network is to adjust every particular 
connection weight in the network. According to the set of current values of the weights  s

jiw  
ascent or descent is defined, the aim being the global error reduction. This can be realized by 
applying the gradient descent rule: 
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where  is the learning coefficient. Partial derivations in the above expression can be 
calculated directly from the local error value, which is given by the following expression: 
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      Including the calculated values of partial derivations from Eq. (11) into the Eq. (10) the 
expression for adjusting the weights is obtained: 

     1 s
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s
j

s
ji xew       (12) 

      One of the problems of the descent algorithm is the setting of the corresponding learning 
coefficient. The change of the weights as a linear function of partial derivations (defined in 
Eq. (10)) forms the assumption that the surface error is locally linear where the adjective 
locally is defined by the magnitude of the coefficient of learning. If the curvature of the point 
is sharp the assumption of linearity does not hold and divergence will appear close to this 
point. That is why the coefficient of learning should be kept at a low level. On the other hand 
a small coefficient of learning can result in very slow learning. To solve such diametrically 
opposed demands the notion of momentum is introduced. The expression for the weight 
increment given in Eq. (12) is changed in such a way that added to it is the product of the 
factors of the weight increment and the momentum, given by the following expression: 

       s
ji

s
i

s
j

s
ji wmomentumxew  1        (13) 

      Modular Neural Network refers to the “Adaptive Mixtures of Local Experts” [28]. It 
consists of a group of networks (referred to as “local experts”) competing to learn different 
aspects of the problem. A gating network controls the competition and learns to assign 
different regions of the data space to different local expert networks [29]. The Feed Forward 
architecture of a MNN is shown in Fig. 2a. Both the gating network and local experts have 
full connections and local experts have full connections from the input layer. Training of a 
MNN occurs simultaneously for the gating network and for the local experts. Training of the 
local experts and gating network is achieved using back propagation of error. 
 

  
 
Figure 2: a) Modular Neural Network; b) Radial Basis Function Neural Network [29]. 
 
      Radial Basis Function Network (Fig. 2b) can in most general cases be considered as any 
network that has radially symmetrical transfer function within the neuron in a hidden layer 
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(samples layer). For the sample unit (hidden layer neuron) to be radially symmetric it must 
have the three following elements: Centre, the input domain vector usually saved in the 
output layer weights vector in the sample unit; Measurements of distance, the measures which 
define the distance of the input vector from the centre; it is usually the standard Euclidian 
measure of distance; Transfer function, the function of a single variable. It defines the output 
of the neuron with functional mapping of the distance from the centre. The common transfer 
function is the Gaussian function which intensifies output values of variables when the 
distance is small. The Gaussian function parameter of width for the kth unit of the hidden layer 
sample is calculated by the following expression: 





P

P
kpkk cc

P 1

21
             (14) 

where: P is the value determined heuristically for the method of the closest neighbours; given 
a cluster centre ck, let k1,..., kp be the indices of the P nearest neighbouring cluster centres 
(internally P = 2). 
      As previously described when computing global error of a learning set, the learning 
algorithm will be able to adjust the connection weights. The global error in an output layer is 
calculated using the following expression: 
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where: di is calculated output value of the network; Yi is desired output value of the sample i; 
N is number of samples in the learning set. 

 
3. EXPERIMENTAL RESULTS AND DISCUSSION 

3.1  Results obtained by Back-Propagation Neural Network 

After analyzing and summing up the results in Table III, obtained in the investigation using 
various architectures of BPNN, it can be seen that the best result was obtained by the 
combination of the Sigmoid transfer function and the Delta rules of learning. Further analysis 
of results led to the conclusion that the best results were obtained by the Sigmoid transfer 
function for the BPNN. 
 

Table III: Review of RMS error results obtained by BPNN. 
 

Cases NN phases 
No. Transfer function  Learning rule Learning Validation 
1. Linear Delta-Bar-Delta 0.2541 0.3075 
2. Sigmoid Delta-Bar-Delta 0.1049 0.1252 
3. Sinus Delta-Bar-Delta 0.2528 0.3059 
4. Hyperbolic-tangent  Delta-Bar-Delta 0.2515 0.3039 
5. Sigmoid Delta 0.0646 0.0775 
6. Hyperbolic-tangent  Delta 0.1524 0.2189 
7. Linear Extended Delta-Bar-Delta 0.2537 0.3067 
8. Sigmoid Extended Delta-Bar-Delta 0.0951 0.1153 
9. Sinus Extended Delta-Bar-Delta 0.2163 0.2557 
10. Hyperbolic-tangent  Extended Delta-Bar-Delta 0.2012 0.1911 
11. Sigmoid Normalised-Cumulative Delta  0.0952 0.1153 
12. Sinus Normalised-Cumulative Delta  0.2538 0.3076 
13. Hyperbolic-tangent  Normalised-Cumulative Delta  0.2535 0.3072 
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      The next transfer function with the best result was the Hyperbolic-tangent one. Better 
results of the Sigmoid function were to be expected as it was defined (Table II) for positive 
values while the Hyperbolic-tangent function was defined for both positive and negative 
values. Our data model for inputs and outputs consisted exclusively of the positive values of 
the model variables. Fig. 3a shows parallel values of the surface roughness obtained by 
measuring in the conducted experiment on a machine during the machining process and 
predictive values based on the model obtained by the BPNN. 

3.2  Results obtained by Modular Neural Network 

Applications of the MNN on the data set and the obtained results are given in Table IV. The 
architecture with the combination of the Sigmoid transfer function and the Delta rules of 
learning produced the RMS error lowest level of 6.02 %. The Sigmoid transfer function in 
combination with the Extended Delta-Bar-Delta, the Delta-Bar-Delta and the Normalized-
Cumulative Delta rule of learning, with the corresponding architectures, produced the RMS 
error lowest levels. 
 

Table IV: Review of RMS error results obtained by MNN. 
 

Cases NN phases 
No. Transfer function  Learning rule Learning Validation 

1. Linear Delta-Bar-Delta 0.2438 0.2911 
2. Sigmoid Delta-Bar-Delta 0.0972 0.1225 
3. Sinus Delta-Bar-Delta 0.2374 0.2933 
4. Hyperbolic-tangent Delta-Bar-Delta 0.2347 0.2920 
5 Sigmoid Delta 0.0602 0.0887 
6. Hyperbolic-tangent Delta 0.1670 0.2241 
7. DNNA Delta 0.0615 0.0820 
8. Linear Extended Delta-Bar-Delta 0.1853 0.1888 
9. Sigmoid Extended Delta-Bar-Delta 0.0776 0.0903 
10. Sinus Extended Delta-Bar-Delta 0.1555 0.2030 
11. Hyperbolic-tangent Extended Delta-Bar-Delta 0.1515 0.1936 
12. DNNA Extended Delta-Bar-Delta 0.0643 0.0846 
13. Sigmoid Normalised-Cumulative Delta  0.0950 0.1148 
14. Hyperbolic-tangent Normalised-Cumulative Delta  0.1577 0.2344 
15. DNNA Normalised-Cumulative Delta  0.0681 0.0872 

 

  
 
Figure 3: Roughness prediction by the application of: a) BPNN; b) MNN. 
 
      Further analysis shows that the DNNA transfer function produces the lowest dissipation of 
output results (within 1 %) and after the Sigmoid function it can be accepted for the MNN 
application. Fig. 3b displays graphical representation of the model predicted results of the 
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surface roughness and the real (actual) values obtained by the experiment. Thus the obtained 
result proves the theory that says the results obtained by the MNN are usually better than the 
results of the BPNN. 
 
3.3  Results obtained by Radial Basis Function Neural Network 

The amount of levels of RMS errors shown in Table V represents the results of investigation 
with RBFNN. The analysis of obtained results shows that the results obtained in various 
phases of investigation and work with networks are lower in comparison with the BPNN and 
MNN. The best level of the RMS error, 5.24 %, is produces by the structure combining the 
Sigmoid transfer function and the Normalised-Cumulative Delta rule of learning. The results 
obtained by the application of this network (Table V) also lead to the conclusion that the 
Sigmoid transfer function gave the best results. 
 

Table V: Review of RMS error results obtained by RBFNN. 
 

Cases NN phases 
No. Transfer function  Learning rule Learning Validation 

1. Linear Delta-Bar-Delta 0.1613 0.2451 
2. Sigmoid Delta-Bar-Delta 0.0967 0.1221 
3. Sinus Delta-Bar-Delta 0.1622 0.2453 
4. Hyperbolic-tangent Delta-Bar-Delta 0.1640 0.2461 
5. DNNA Delta-Bar-Delta 0.0817 0.1098 
6. Sigmoid Delta 0.0602 0.0887 
7. Sinus Delta 0.2300 0.3730 
8. Hyperbolic-tangent Delta 0.6083 0.6660 
9. DNNA Delta 0.1047 0.1218 

10. Linear Extended Delta-Bar-Delta 0.1427 0.2347 
11. Sigmoid Extended Delta-Bar-Delta 0.0599 0.0917 
12. Sinus Extended Delta-Bar-Delta 0.1438 0.2339 
13. Hyperbolic-tangent Extended Delta-Bar-Delta 0.1449 0.2338 
14. DNNA Extended Delta-Bar-Delta 0.0643 0.0846 
15. Sigmoid Normalised-Cumulative Delta  0.0524 0.0853 
16. Sinus Normalised-Cumulative Delta  0.1525 0.2471 
17. Hyperbolic-tangent Normalised-Cumulative Delta  0.1404 0.2037 
18. DNNA Normalised-Cumulative Delta  0.0527 0.0782 

 

 
 
Figure 4: Roughness prediction by the application of RBFNN. 
 
      The following DNNA transfer function also gives good results with the dissipation of 
results within 5 % in combination with the rules of learning. Relatively high amounts of the 
RMS error can also be observed for the Linear, Sinus and Hyperbolic-tangent transfer function 
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in combination with different rules of learning (except for the combination with the Delta rule 
of learning), up to 23 %. Fig. 4 presents the results obtained by measuring in the process of 
machining and calculating with the best architecture of the RBFNN. 
 
3.4  Review of the best results 

During experimental part of the work on investigating different architectures of NN and 
adjusting various attributes, different results were obtained. The best results of investigation 
with the three selected architectures of NN are presented in Table VI and in Fig. 5. 
 

Table VI: Review of the best results with the corresponding NN architectures. 
 

Best Cases NN phases 
Type of NN Transfer function Learning rule Learning Validation 

BPNN Sigmoid Delta 0.0646 0.0775 
MNN Sigmoid Delta 0.0602 0.0887 

RBFNN Sigmoid Normalised-Cumulative Delta 0.0524 0.0853 
 

 
 
Figure 5: Roughness prediction by different NN – Comparison of results. 
 
4. CONCLUSION 
 
The paper presents the investigation of the machined surface roughness in the milling process. 
A model with different machining parameters was set up for the given investigation. As the 
input or controlled parameters in the proposed model the following parameters were defined: 
number of revolutions – cutting speed, feed, depth of cut, variations in the use of coolant and 
the machined surface roughness as the output variable. Based on the test model the 
experiment plan was designed and on its basis the machining of samples conducted. When the 
machining was over and the surface roughness measured a data sample was obtained for 
experimental work with artificial neural networks. The aim of the investigation was to design 
a model that will define the predictive values and simulate the amounts of roughness based on 
the controlled process values with an acceptable error. Based on the accessible literature 
review and theoretical postulates three algorithms of neural networks were selected to solve 
the prediction problems. In the modelling process the following algorithms were used: Back-
Propagation Neural Network, Modular Neural Network and Radial Basis Function Neural 
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Network. In the experimental process and the investigation of the proposed model, different 
architectures of neural networks were modelled. On the modelled architectures the attributes 
were adjusted and various transfer functions and learning rules investigated. On the modelled 
architectures of neural networks the learning process and the testing on the proposed data 
sample were conducted. The results obtained in the investigation are presented in tables, 
separately for every neural network algorithm. The different architectures of neural networks, 
investigated on the data sample, generated the best prediction results which are at the level of 
the RMS (Root Mean Square) error of 5.24 % in the learning phase (8.53 % in the validation 
phase) for the Radial Basis Function Neural Network, 6.02 % (8.87 % in the validation phase) 
for the Modular Neural Network and Back-Propagation Neural Network 6.46 % (7.75 % in 
the validation phase). The results obtained in the investigation and the levels of the RMS error 
are acceptable in view of the proposed technological model for roughness prediction. The 
modelled algorithms of neural networks could be implemented and efficiently used as a part 
of a technological module or within the information systems used as a support to the planning 
and modelling of technological processes. 
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